قسم الرياضيات /الفصل الدراسي الثاني الشائي المرحلة الثالثة / نظرية الحلقات أ.م.د.حميد الزهيري

تعریف: لتکن (R,+,.) حلقة ، و $R \supset S$ فیطلق علی الثلاثی (R,+,.) حلقة جزئیة من الحلقة (R,+,.) اذا کانت (R,+,.) حلقة بحد ذاتها.

(R,+,.) مثال: بين فيما ان (Z,+,.) حلقة جزئية من الحلقة حيث ان R هي مجموعة الاعداد الحقيقية .

الحل:

 $Z \subset R$

یجب ان نوضح ان (Z, +, Z) یمثل حلقة بحد ذاتها (Z, +, Z) زمرة ابدالیة واجب (Z, +, Z)

Z عملیة تجمیعیة علی Z

 $\forall a, b, c \in Z \rightarrow (a.b). c = a.(b.c)$

٢- العملية . تتوزع على عملية + من اليسار واليمين

$$\forall a,b,c \in Z \to a.\,(b+c) = a.\,b+a.\,c$$
 $(a+b).\,c = a.\,c+b.\,c$ و اذن الثلاثي $(Z,+,.)$ حلقة من خلال التعریف (یکتب نص التعریف) حلقة جزئیة من الحلقة $(R,+,.)$

$$(Q,+,.)$$
 حلقة جزئية من الحلقة $(Z,+,.)$ مثال: بين فيما ان $(Z,+,.)$ حلقة جزئية من الحلة .

 $Z \subset Q$

یجب ان نوضح ان
$$(Z, +, .)$$
 یمثل حلقة بحد ذاتها $(Z, +)$ زمرة ابدالیة واجب

. عملية تجميعية على Z

$$\forall a, b, c \in Z \rightarrow (a.b). c = a.(b.c)$$

$$(Q,+,.)$$
 حلقة جزئية من الحلقة $(Z,+,.)$

مبرهنة:

لتكن (S,+,.) حلقة ، و $S \subset R$ فيطلق على الثلاثي (R,+,.) حلقة جزئية من الحلقة (R,+,.) تحققت الشروط الاتية.

$$\forall a, b \in S \rightarrow 1$$
) $a - b \in S$ 2) $a.b \in S$

مثال : بين فيما ان
$$(S, +_6, ._6)$$
 حلقة جزئية من الحلقة $S, +_6, ._6$ حيث ان $S = \{0,2,4\}$

$$Z_6 = 0,1,2,\dots,5:$$
 الحل : $Z_6 = 0,1,2,\dots,5$ يجب ان نبر هن ان
$$\forall a,b \in S \to 1) \quad a-b \in S \qquad 2) \ a.b \in S$$

+6	0	2	4
0	0	2	4
2	2	4	0
4	4	0	2

•6	0	2	4
0	0	0	0
2	0	4	2
4	0	2	4

حسب المبر هنة (تكتب نص $(S, +_6, ._6)$ حسب المبر هنة (تكتب نص المبر هنة)

ملاحظة : كل حلقة مثل (R,+,1) تمتلك على الاقل حلقتين جزئيتين هما (R,+,1) وتسمى الحلقات الجزئية التافهه (R,+,1)

تعریف: لتکن (S, +, .) حلقة جزئیة من الحلقة (R, +, .) یطلق علی (S, +, .) حلقة جزئیة فعلیة من الحلقة (S, +, .) اذا کانت

$$S \neq \{0\} \neq R$$

بين فيما ان الثلاثي $(Z_{10}\,,+_{10}\,,_{10}\,)$ يمثل حلقة ابدالية ذات عنصر محايد

 $(Z_{12}, +_{12}, ._{12})$ مثال : جد الحلقات الجزئية الفعلية للحلقة

$$Z_{12} = \{0,1,2,...,11\}$$
 : i.e.

$$S_1 = \{0,2,4,6,8,10\}$$

 $S_2 = \{0,3,6,9\}$
 $S_3 = \{0,4,8\}$
 $S_4 = \{0,6\}$

اذن الحلقات الجزئية الفعلية هي

1)
$$(S_1, +_{12}, ._{12})$$
 2) $(S_2, +_{12}, ._{12})$
3) $(S_3, +_{12}, ._{12})$ 4) $(S_4, +_{12}, ._{12})$

 $(Z_{14}, +_{14}, ._{14})$ مثال : جد الحلقات الجزئية الفعلية للحلقة

$$Z_{14} = \{0,1,2,\dots,13\}$$
 : i.e.

$$S_1 = \{0,2,4,6,8,10,12\}$$

 $S_2 = \{0,7\}$

اذن الحلقات الجزئية الفعلية هي

1)
$$(S_1, +_{14}, ._{14})$$
 2) $(S_2, +_{14}, ._{14})$

 $(Z_{30}, +_{30}, ._{30})$ مثال : جد الحلقات الجزئية الفعلية للحلقة

$$Z_{30} = \{0,1,2,\dots,29\}$$
 : ideal

$$S_1 = \{0,2,4,6,8,10,12,14,16,18,20,22,24,26,28\}$$

 $S_2 = \{0,15\}$
 $S_3 = \{0,3,6,9,12,15,18,21,24,27\}$
 $S_4 = \{0,10,20\}$

$$S_5 = \{0,5,10,15,20,25\}$$

 $S_6 = \{0,6,12,18,24\}$

اذن الحلقات الجزئية الفعلية هي

1)
$$(S_1, +_{30}, ._{30})$$
 2) $(S_2, +_{30}, ._{30})$

2)
$$(S_3, +_{30}, ._{30})$$
 4) $(S_4, +_{30}, ._{30})$

5)
$$(S_5, +_{30}, ._{30})$$
 6) $(S_6, +_{30}, ._{30})$

مثال : جد الحلقات الجزئية الفعلية للحلقة $(Z_{48}, +_{48}, ._{48})$ و اجب

ملاحظات

من الممكن ان تكون الحلقة الجزئية هي حلقة جزئية ذات عنصر محابد

ج/١) من الممكن ان تمتلك الحلقة الجزئية عنصر محايد ويمكن ان يكون هو نفسه العنصر المحايد للحلقة الام

مثال:

(R,+,.) حلقة جزئية من الحلقة (Z,+,.) حيث ان R هي مجموعة الاعداد الحقيقية .

الحلقة (R,+,.) حلقة ذات عنصر محايد و هو

عنصر محاید و هو 1 حلقة جزئیة ذات عنصر محاید و هو (Z,+,.)

٢) من الممكن ان تمتلك الحلقة الجزئية عنصر محايد
 ويمكن ان لا يكون هو نفسه العنصر المحايد للحلقة الام
 مثال / واجب

٣) ان لاتمتلك الحلقة الجزئية عنصر محايد

$$(Z,+,.)$$
 حلقة جزئية من الحلقة $(Z_e,+,.)$ ان

(Z,+,.) حلقة جزئية ذات عنصر محايد وهو 1 لكن $(Z_e,+,.)$ لاتمتلك عنصر محايد